3.5.17 \(\int \frac {(e \sec (c+d x))^{3/2}}{\sqrt {a+i a \tan (c+d x)}} \, dx\) [417]

Optimal. Leaf size=483 \[ -\frac {i \sqrt {2} \sqrt {a} e^{3/2} \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {i \sqrt {2} \sqrt {a} e^{3/2} \text {ArcTan}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {i \sqrt {a} e^{3/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{\sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {i \sqrt {a} e^{3/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{\sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \]

[Out]

1/2*I*e^(3/2)*ln(a-2^(1/2)*a^(1/2)*e^(1/2)*(a-I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/2)+cos(d*x+c)*(a-I*a*tan
(d*x+c)))*sec(d*x+c)*a^(1/2)/d*2^(1/2)/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2)-1/2*I*e^(3/2)*ln(a+2^
(1/2)*a^(1/2)*e^(1/2)*(a-I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/2)+cos(d*x+c)*(a-I*a*tan(d*x+c)))*sec(d*x+c)*
a^(1/2)/d*2^(1/2)/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2)-I*e^(3/2)*arctan(1-2^(1/2)*e^(1/2)*(a-I*a*
tan(d*x+c))^(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))*sec(d*x+c)*2^(1/2)*a^(1/2)/d/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*t
an(d*x+c))^(1/2)+I*e^(3/2)*arctan(1+2^(1/2)*e^(1/2)*(a-I*a*tan(d*x+c))^(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))*sec
(d*x+c)*2^(1/2)*a^(1/2)/d/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.24, antiderivative size = 483, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {3580, 3576, 303, 1176, 631, 210, 1179, 642} \begin {gather*} -\frac {i \sqrt {2} \sqrt {a} e^{3/2} \sec (c+d x) \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {i \sqrt {2} \sqrt {a} e^{3/2} \sec (c+d x) \text {ArcTan}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {i \sqrt {a} e^{3/2} \sec (c+d x) \log \left (-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))+a\right )}{\sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {i \sqrt {a} e^{3/2} \sec (c+d x) \log \left (\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))+a\right )}{\sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(e*Sec[c + d*x])^(3/2)/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

((-I)*Sqrt[2]*Sqrt[a]*e^(3/2)*ArcTan[1 - (Sqrt[2]*Sqrt[e]*Sqrt[a - I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c +
d*x]])]*Sec[c + d*x])/(d*Sqrt[a - I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) + (I*Sqrt[2]*Sqrt[a]*e^(3/2)*A
rcTan[1 + (Sqrt[2]*Sqrt[e]*Sqrt[a - I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])]*Sec[c + d*x])/(d*Sqrt[a
 - I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) + (I*Sqrt[a]*e^(3/2)*Log[a - (Sqrt[2]*Sqrt[a]*Sqrt[e]*Sqrt[a
- I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a - I*a*Tan[c + d*x])]*Sec[c + d*x])/(Sqrt[2]*d*Sqrt
[a - I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) - (I*Sqrt[a]*e^(3/2)*Log[a + (Sqrt[2]*Sqrt[a]*Sqrt[e]*Sqrt[
a - I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a - I*a*Tan[c + d*x])]*Sec[c + d*x])/(Sqrt[2]*d*Sq
rt[a - I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 3576

Int[Sqrt[(d_.)*sec[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-4*b*(d^
2/f), Subst[Int[x^2/(a^2 + d^2*x^4), x], x, Sqrt[a + b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]]], x] /; FreeQ[{a, b,
 d, e, f}, x] && EqQ[a^2 + b^2, 0]

Rule 3580

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(3/2)/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[d*(Sec
[e + f*x]/(Sqrt[a - b*Tan[e + f*x]]*Sqrt[a + b*Tan[e + f*x]])), Int[Sqrt[d*Sec[e + f*x]]*Sqrt[a - b*Tan[e + f*
x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int \frac {(e \sec (c+d x))^{3/2}}{\sqrt {a+i a \tan (c+d x)}} \, dx &=\frac {(e \sec (c+d x)) \int \sqrt {e \sec (c+d x)} \sqrt {a-i a \tan (c+d x)} \, dx}{\sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=\frac {\left (4 i a e^3 \sec (c+d x)\right ) \text {Subst}\left (\int \frac {x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=-\frac {\left (2 i a e^2 \sec (c+d x)\right ) \text {Subst}\left (\int \frac {a-e x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (2 i a e^2 \sec (c+d x)\right ) \text {Subst}\left (\int \frac {a+e x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=\frac {(i a e \sec (c+d x)) \text {Subst}\left (\int \frac {1}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}+x^2} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {(i a e \sec (c+d x)) \text {Subst}\left (\int \frac {1}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}+x^2} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (i \sqrt {a} e^{3/2} \sec (c+d x)\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {a}}{\sqrt {e}}+2 x}{-\frac {a}{e}-\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}-x^2} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (i \sqrt {a} e^{3/2} \sec (c+d x)\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {a}}{\sqrt {e}}-2 x}{-\frac {a}{e}+\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}-x^2} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=\frac {i \sqrt {a} e^{3/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{\sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {i \sqrt {a} e^{3/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{\sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (i \sqrt {2} \sqrt {a} e^{3/2} \sec (c+d x)\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {\left (i \sqrt {2} \sqrt {a} e^{3/2} \sec (c+d x)\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=-\frac {i \sqrt {2} \sqrt {a} e^{3/2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {i \sqrt {2} \sqrt {a} e^{3/2} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {i \sqrt {a} e^{3/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{\sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {i \sqrt {a} e^{3/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{\sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.45, size = 302, normalized size = 0.63 \begin {gather*} \frac {2 e \sqrt {e \sec (c+d x)} \left (\tanh ^{-1}\left (\frac {\sqrt {1+i \cos (c)-\sin (c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}}{\sqrt {-1+i \cos (c)+\sin (c)} \sqrt {i+\tan \left (\frac {d x}{2}\right )}}\right ) \sqrt {-1-i \cos (c)-\sin (c)} \sqrt {1+i \cos (c)-\sin (c)}-\tanh ^{-1}\left (\frac {\sqrt {1-i \cos (c)+\sin (c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}}{\sqrt {-1-i \cos (c)-\sin (c)} \sqrt {i+\tan \left (\frac {d x}{2}\right )}}\right ) \sqrt {1-i \cos (c)+\sin (c)} \sqrt {-1+i \cos (c)+\sin (c)}\right ) (\cos (d x)+i \sin (d x)) \sqrt {i+\tan \left (\frac {d x}{2}\right )}}{d \sqrt {-1-i \cos (c)-\sin (c)} \sqrt {-1+i \cos (c)+\sin (c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )} \sqrt {a+i a \tan (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(e*Sec[c + d*x])^(3/2)/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(2*e*Sqrt[e*Sec[c + d*x]]*(ArcTanh[(Sqrt[1 + I*Cos[c] - Sin[c]]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[-1 + I*Cos[c] +
Sin[c]]*Sqrt[I + Tan[(d*x)/2]])]*Sqrt[-1 - I*Cos[c] - Sin[c]]*Sqrt[1 + I*Cos[c] - Sin[c]] - ArcTanh[(Sqrt[1 -
I*Cos[c] + Sin[c]]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[-1 - I*Cos[c] - Sin[c]]*Sqrt[I + Tan[(d*x)/2]])]*Sqrt[1 - I*C
os[c] + Sin[c]]*Sqrt[-1 + I*Cos[c] + Sin[c]])*(Cos[d*x] + I*Sin[d*x])*Sqrt[I + Tan[(d*x)/2]])/(d*Sqrt[-1 - I*C
os[c] - Sin[c]]*Sqrt[-1 + I*Cos[c] + Sin[c]]*Sqrt[I - Tan[(d*x)/2]]*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Maple [A]
time = 1.12, size = 232, normalized size = 0.48

method result size
default \(\frac {\left (\frac {e}{\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \left (\cos ^{2}\left (d x +c \right )\right ) \left (-1+\cos \left (d x +c \right )\right )^{2} \sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (i \arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1+\sin \left (d x +c \right )\right )}{2}\right )-i \arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1-\sin \left (d x +c \right )\right )}{2}\right )+\arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1+\sin \left (d x +c \right )\right )}{2}\right )+\arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1-\sin \left (d x +c \right )\right )}{2}\right )\right )}{d \sin \left (d x +c \right )^{3} \left (\frac {1}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )-1\right ) a}\) \(232\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(e/cos(d*x+c))^(3/2)*cos(d*x+c)^2*(-1+cos(d*x+c))^2*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(I*arct
anh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))-I*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)
+1-sin(d*x+c)))+arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))+arctanh(1/2*(1/(1+cos(d*x+c)))
^(1/2)*(cos(d*x+c)+1-sin(d*x+c))))/sin(d*x+c)^3/(1/(1+cos(d*x+c)))^(3/2)/(I*sin(d*x+c)+cos(d*x+c)-1)/a

________________________________________________________________________________________

Maxima [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 713 vs. \(2 (343) = 686\).
time = 0.58, size = 713, normalized size = 1.48 \begin {gather*} -\frac {{\left (2 i \, \sqrt {2} \arctan \left (\sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right ) + 2 i \, \sqrt {2} \arctan \left (\sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1, -\sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right ) + 2 i \, \sqrt {2} \arctan \left (\sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right ) + 2 i \, \sqrt {2} \arctan \left (\sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1, -\sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right ) - 2 \, \sqrt {2} \arctan \left (\sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sin \left (d x + c\right ), \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \cos \left (d x + c\right ) + 1\right ) + 2 \, \sqrt {2} \arctan \left (-\sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sin \left (d x + c\right ), -\sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \cos \left (d x + c\right ) + 1\right ) + i \, \sqrt {2} \log \left (2 \, \sqrt {2} \sin \left (d x + c\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, {\left (\sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )} \cos \left (d x + c\right ) + \cos \left (d x + c\right )^{2} + 2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + \sin \left (d x + c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right ) - i \, \sqrt {2} \log \left (-2 \, \sqrt {2} \sin \left (d x + c\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, {\left (\sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )} \cos \left (d x + c\right ) + \cos \left (d x + c\right )^{2} + 2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + \sin \left (d x + c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right ) - \sqrt {2} \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) + \sqrt {2} \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) - \sqrt {2} \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) + \sqrt {2} \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right )\right )} e^{\frac {3}{2}}}{4 \, \sqrt {a} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-1/4*(2*I*sqrt(2)*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) + 1, sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*I*sqrt(2)*ar
ctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) + 1, -sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*I*sqrt(2)*arctan2(sqrt(2)*cos(1
/2*d*x + 1/2*c) - 1, sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*I*sqrt(2)*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) - 1,
 -sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) - 2*sqrt(2)*arctan2(sqrt(2)*sin(1/2*d*x + 1/2*c) + sin(d*x + c), sqrt(2)*c
os(1/2*d*x + 1/2*c) + cos(d*x + c) + 1) + 2*sqrt(2)*arctan2(-sqrt(2)*sin(1/2*d*x + 1/2*c) + sin(d*x + c), -sqr
t(2)*cos(1/2*d*x + 1/2*c) + cos(d*x + c) + 1) + I*sqrt(2)*log(2*sqrt(2)*sin(d*x + c)*sin(1/2*d*x + 1/2*c) + 2*
(sqrt(2)*cos(1/2*d*x + 1/2*c) + 1)*cos(d*x + c) + cos(d*x + c)^2 + 2*cos(1/2*d*x + 1/2*c)^2 + sin(d*x + c)^2 +
 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 1) - I*sqrt(2)*log(-2*sqrt(2)*sin(d*x + c)*sin(1/
2*d*x + 1/2*c) - 2*(sqrt(2)*cos(1/2*d*x + 1/2*c) - 1)*cos(d*x + c) + cos(d*x + c)^2 + 2*cos(1/2*d*x + 1/2*c)^2
 + sin(d*x + c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(2*cos(1/2*d*x
 + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2)
+ sqrt(2)*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)
*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1
/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + sqrt(2)*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x +
 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*e^(3/2)/(sqrt(a)*d)

________________________________________________________________________________________

Fricas [A]
time = 0.38, size = 357, normalized size = 0.74 \begin {gather*} \frac {1}{2} \, \sqrt {\frac {4 i \, e^{3}}{a d^{2}}} \log \left ({\left (i \, a d \sqrt {\frac {4 i \, e^{3}}{a d^{2}}} + \frac {2 \, \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\frac {3}{2}} + e^{\left (2 i \, d x + 2 i \, c + \frac {3}{2}\right )}\right )} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-\frac {3}{2}\right )}\right ) - \frac {1}{2} \, \sqrt {\frac {4 i \, e^{3}}{a d^{2}}} \log \left ({\left (-i \, a d \sqrt {\frac {4 i \, e^{3}}{a d^{2}}} + \frac {2 \, \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\frac {3}{2}} + e^{\left (2 i \, d x + 2 i \, c + \frac {3}{2}\right )}\right )} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-\frac {3}{2}\right )}\right ) + \frac {1}{2} \, \sqrt {-\frac {4 i \, e^{3}}{a d^{2}}} \log \left ({\left (i \, a d \sqrt {-\frac {4 i \, e^{3}}{a d^{2}}} + \frac {2 \, \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\frac {3}{2}} + e^{\left (2 i \, d x + 2 i \, c + \frac {3}{2}\right )}\right )} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-\frac {3}{2}\right )}\right ) - \frac {1}{2} \, \sqrt {-\frac {4 i \, e^{3}}{a d^{2}}} \log \left ({\left (-i \, a d \sqrt {-\frac {4 i \, e^{3}}{a d^{2}}} + \frac {2 \, \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\frac {3}{2}} + e^{\left (2 i \, d x + 2 i \, c + \frac {3}{2}\right )}\right )} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-\frac {3}{2}\right )}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(4*I*e^3/(a*d^2))*log((I*a*d*sqrt(4*I*e^3/(a*d^2)) + 2*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(e^(3/2) + e^
(2*I*d*x + 2*I*c + 3/2))*e^(1/2*I*d*x + 1/2*I*c)/sqrt(e^(2*I*d*x + 2*I*c) + 1))*e^(-3/2)) - 1/2*sqrt(4*I*e^3/(
a*d^2))*log((-I*a*d*sqrt(4*I*e^3/(a*d^2)) + 2*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(e^(3/2) + e^(2*I*d*x + 2*I*c
+ 3/2))*e^(1/2*I*d*x + 1/2*I*c)/sqrt(e^(2*I*d*x + 2*I*c) + 1))*e^(-3/2)) + 1/2*sqrt(-4*I*e^3/(a*d^2))*log((I*a
*d*sqrt(-4*I*e^3/(a*d^2)) + 2*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(e^(3/2) + e^(2*I*d*x + 2*I*c + 3/2))*e^(1/2*I
*d*x + 1/2*I*c)/sqrt(e^(2*I*d*x + 2*I*c) + 1))*e^(-3/2)) - 1/2*sqrt(-4*I*e^3/(a*d^2))*log((-I*a*d*sqrt(-4*I*e^
3/(a*d^2)) + 2*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(e^(3/2) + e^(2*I*d*x + 2*I*c + 3/2))*e^(1/2*I*d*x + 1/2*I*c)
/sqrt(e^(2*I*d*x + 2*I*c) + 1))*e^(-3/2))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (e \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}{\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))**(3/2)/(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Integral((e*sec(c + d*x))**(3/2)/sqrt(I*a*(tan(c + d*x) - I)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(e^(3/2)*sec(d*x + c)^(3/2)/sqrt(I*a*tan(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e/cos(c + d*x))^(3/2)/(a + a*tan(c + d*x)*1i)^(1/2),x)

[Out]

int((e/cos(c + d*x))^(3/2)/(a + a*tan(c + d*x)*1i)^(1/2), x)

________________________________________________________________________________________